CE/RW
\

NN/

MySQL High Availability in the
Database On Demand service

Abel Cabezas Alonso Project Associate at CERN

Date 12 October 2020

Presentation content

1. Brief introduction to the Database On Demand service.

2. Why High Availability?

3. High Availability solutions in the MySQL ecosystem.

4. ProxySQL + MySQL Primary/Secondary simple replication.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

1. Brief introduction to the DBOD
Service.

ezas Alonso | MySQL High Availability in the Database On Demand service

What is the DBOD Service?

« Bornin 2012 was originally conceived as DBaaS (database as a service)
with the goal of centralising and standardising procedures for the
existing MySQL and PostgreSQL databases within CERN.

 Provide a free open source alternative to the central Oracle-based
database service.

« The DBOD empowers users to perform certain actions that are
traditionally done by DBAs granting them full DBA privileges.

« Any user with a CERN user account can request a DBOD instance.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Database on Demand
service architecture

The user interacts directly
with his instance as she/he
would do in aregular

Database On Demand service

£ openstack. + Physical servers A\ puppet installation.
Application layer Database service layer Web interface for man aging
start/stop, backups,

® i T restoring, monitoring
ak li—M" ,configuration files, logs...
' e
ak Em e [f Puppet managed nodes.
- S— L W Database servers running
ah Poptcaon - on CERN CentOS 7.

Clustered storage network
provided by NetApp.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Database on Demand
service architecture.

One user can own from 1 to
é Database On Demand service N instanc es

An instance can be owned

Systemd
managed

Database service layer : N > o by only one person but
" , =3l managed by all members of
o cper —S3 Wn the designated project.

VM ar
Physical
machine

Instances run on premise
physical or cloud hosts.

A server can host several
Instances and be run on 6
different Availability Zones.

Each instance’s storage is
split into two separate
volumes.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

What we provide:

« Automated backup and recovery services.

« Monitoring of instance, server and storage metrics.

« Cloning .

« Replication.

 Three different DBMS : MySQL, PostgreSQL and InfluxDB.
« Database upgrades.

« Warranty of service continuity.

 And now... High Availability (for MySQL by now).

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

The DBOD Iin numbers

 More than 1000 instances as of October 2020.

600 MySQL
e 267 PostgreSQL
e 152 InfluxDB
« 155 managed Virtual + Physical hosts.
« Around 36 TB of data managed.
* Around 800 users subscribed to the service.
» 8 years of operational experience.

Database on Demand instances

Evolution of the amount of MySQL, PostgreSQL, and InfluxDB instances in the DBOD service

3 1014 19

2012 2013 2014 2015 2016 2017 2018 2019 2020

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

2. Why High Availability?

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

What is High Availability?

« The capacity of a system to offer operational continuity during a given
period of time.

 Three main principles to achieve High Availability:

 Redundancy: if a component fails you have to have a replacement
for it (no single point of failure).

« Contingency plans: or what to do if a component fails.

 Procedure: if a component fails you have to be able to detect it and
then execute your plans.

Reference: Charles Bell, Mats Kindahl & Lars Thalmann, (2010) MySQL High Availability: Tools for building robust data centers,
O’Reilly, 1st edition.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Why do we need High Availability in the DBOD
service?

 Network interventions affecting routers or switches.
« Storage failures.
« Database corruption.
« Host resources exhausted.
 Problems with the hypervisor.
 Regular service operations.
 OS upgrade
« Scheduled database server upgrades.
« Scheduled Storage migrations.

* Not the rule, but many things can go wrong...

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Precedents

Master/Replica with manual switchover/failover.
« Advantages

In case of planned interventions, users can prepare in
advance for the outage. % Master

My
Users can still operate with the promoted replica during the

client

major planned interventions.

« Disadvantages:

Requires manual intervention. Wication

Requires planning. client ‘
No HA solution.

] M}‘ e Replica
Users have to manually update the connection parameters

in their code. |
Unmanageable when the amount of replication sets is big.
No contingency plan for unexpected failures.

Failover times depend on the operator’s availability and its
ability to perform the failover.

e We need to automate.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

\

\

\

\

Data
volume

Binlogs
volume

Data
volume

Binlogs
volume

Our requirements

- Easily adaptable to our infrastructure.

- Easily deployable.

« Architecture easy to use and fix.

« Low impact in terms of resource consumption.
« Single point of connection for the user.

« Automatic failover (areplica has to automatically take over its master
and start accepting writes).

* Prime consistency over availability (better late than nothing).

 Free Open Source.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

3. High availability solutions in the
MySQL ecosystem.

abezas Alonso | MySQL High Availability in the Database On Demand service

MySQL Simple replication
+ MariaDB MaxScale Proxy

MariaDB MaxScale

« Database proxy that forwards database statements
to one or more MySQL or MariaDB database
servers.

» Forwarding is performed using rules based on the
semantic and the roles of the servers within the
backend cluster of databases.

* Built-in automatic failover.
» Tested as a PoC.
* Problem:
« Licensing.
« BSL 1.0 licensed (not free).
« Max amount of instances without license < 3.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

MySQL Group Replication with
ProxySQL

Group replication

* Provided as a plugin to MySQL server.
« Distributed database.

« Automatic failover.

« Minimum number of instances to achieve consensus = 3.

 Each transaction is executed or rolled back based on the
consensus of all members.

« Tested as a PoC.

* Problem:
* We hit several bugs while testing.

* Cluster left in inconsistent state without writable
members.

« Hard to repair.
« Further testing envisaged.

Ll

client

client

ProxySQL

My

MySQL
Group
Replication
Secondary
!\‘1"/
=
P -
Primary
»
| S
x !
» My Secondary
| 8

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Client App

MySQL Shell
MySQL InnoDB Cluster. e -
! |
T i 1
1 |
MySQL Group replication with extended _
functionality. ::r,ﬁ:f;t MYSOL A e
* Built-in failover.
MySQL Shell: for easily managing and setting up e I ... _.
the cluster. MySQL Servers :
« MySQL router as a MySQL native proxy (has no rima
ySQ ySQ proxy (Primary

affinity with the instances of the cluster).

« Uses InnoDB storage engine (like all of our
instances).
« Uses the same binaries as MySQL server. Group Replication

* Problem:
)) Secondary Secondary
« Uses group replication. s Instance

* Further testing envisaged.

High Availability Cluster

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Vitess

« Vitess is a solution that responds to the problem of scalability
more than a solution for HA, although HA can be achieved
integrating it with Orchestrator.

» Its use can be considered for instances bigger than 500 GB
(not our case).

* Ahighly available Vitess Cluster requires (at least) the
following components:

« 2 VTGate Servers (Proxy).
» Aredundant topology service (e.g. 3 etcd servers). APP | VITESS

« 3 MySQL servers with semi-sync replication enabled.
« 3 VTTablet process (Process attached to each MySQL

instance that determines its role in the topology).
« 1 VTctld process.

Problem
* Very complex for our use cases.
* Not all statements compatible with MySQL.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Other options discarded because of
iIncompatibilities with our infrastructure.

e Percona XtraDB cluster:

« Different storage engine (XtraDB): compatible but not the same, it may
diverge over time.

* Requires extra binaries for the deployment.
« MySQL NDB cluster:
« Uses different binaries than MySQL server.

« Use of a different storage engine (NDB instead of InnoDB) which requires
a conversion.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

4. ProxySQL + MySQL
Primary/Secondary replication.

abezas Alonso | MySQL High Availability in the Database On Demand service

ProxySQL

High performance, high availability, protocol aware proxy for MySQL and its forks.

Takes decisions on where to route traffic based on the monitored value of the MySQL
“read-only” / “super-read-only” variable.

« Ifread-only false =>We assume it is a Primary (write to it).
« If read-only true => We assume it is a Secondary (read only).

It is designed to not perform any specialised operation in relation to the servers it is
connected to.

No bulit-in failover.

ProxySQL does not know about the topology it is connected, therefore changes in the
topology have to be updated with custom scripts.

Built-in monitoring module for checking the status of the connected instances.

Scheduler module: Offers the user the possibility to write custom scripts that are run by
ProxySQL in a cron-like fashion.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

First approach

5

» Deploy PoxySQL as a systemd service. L:TL\ ™ o

s M
« Simply routes traffic. | y

~EroySaL/
* Problems: clent SPOF
 How to detect if a component fails?
« Single Point of Failure.
* No redundancy.

* No contingency plan or procedure if a
component fails.

(R
(R0

GTID
replication

My Secondary

o

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

\

\

\

\

Data
volume

Binlogs
volume

Data
volume

Binlogs
volume

How to detect If a node
falls?

* Profiting from the built-in scheduler and
monitoring modules.

* ProxySQL monitors de instances at fixed intervals of .
time and stores the result of the health check inside cen \ - MysaL [= vkme
its internal SQLite3 database. —> 2=

Q . o lu";' s= [, Binlogs
» Custom python scripts check on the status of the ProysaL = volume
nodes by looking at the monitoring table. clent N -
replication
« If the replica is down => do not allow failover to p
happen and alert (prometheus). y N L e=» D
Secondary — volume
« If the Primary is down => wait 5 heartbeats or 25 > =
seconds to avoid false positives and then l!—.. sS | = ones

perform the failover.

* Replicate the users that can access the backends
through the proxy.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Adding redundancy

* Run ProxySQL as a docker container.

dbod-proxy-name.cern.ch

* What happens if it fails? [bmysa
* Run it on Nomad (container orchestrator similar to Kubernetes) %
with nodes in three different availability zones. - . .
l!;- My : Master —, = volzﬁe
ey , %
* ProxySQL cluster mode is not really usable, since it does not /' - > T=y Bnigs
. . ProxySQL
implement consensus algorithms between the nodes (on the road Ll— | "y, [
.. ; 3 GTID
map of ProxySQL creators). Who makes the decisions? B //T 0 | replceton
° i - I (e
SO|UtI0n . . - . D Aﬂffg” y i — = vgme
* Run a single instance and be ready to run a new instance in any dlnt Y ' oo
of the three availability nodes => nomad provides it. Fgﬂ = =) L= snes
* Respawn time of a container on any node of the cluster=5s . - o
[
Availability
Zone-C
- J

* New problem:
 Which is our source of truth?

« |f the new container is started in a different node how does it
know about the previous topology ?

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Adding Consul

dbod-proxy-name.cern.ch

 If the new container is started in a different node how does it %0
know about the previous topology ? IE.. o) M =,
 Consul: W/ITF__ = e
« K-V high available cluster that keeps information of the J:-l Q
topology. - | rplton
- If the ProxySQL is restarted, it will first look at the legitimate I, sty L =
roles registered in Consul.)/ i 22 N
* More problems can happen: % o —<= =
* The primary may go down while the proxy was down. v
« If an old master is restarted having two instances with each A

“read-only” value set to false, who is the legitimate master?

+ Solution: e C C G --

« More python scripts in the scheduler module, to resolve the li lﬁ li
CO n fl i CtS : Availat;l.\-t; Avai\emi'ty Aua\lzmi-ty

Zone-A Zone-B Zone-C

« Two primary conflict.
« Two secondary conflict.
* No primary on the topology.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

dbod-proxy-name.cern.ch

Alerting with Prometheus

e o
&0
. : l!.-o . Master — = ame
« Each ProxySQL container runs with a prometheus node ety ”‘{ -
exporter sidecar container. S —E == I
« Targets (ProxySQL node exporters) are registered in le-&: 94;_\ oo
prometheus server. / i o | | rpteaen
* Prometheus server scrapes metrics at fixed intervals of [:!:W . el ke = om
time. clent 5 s I 1i_ =z |
. _Promethe_us evaluates its alert rules and if any is triggered E‘ié"‘__\ - - =
it passes it to the alert manager. - o
* Notifications by email. All'-;w
- Different types of alerts:
« Container not running. ranened
* ProxySQL down (container running but ProxySQL main
process down).
« No Client connections QPFOTW"‘“%
* Replication Lag > X s | >
* No Primary running. -

* No Secondary running.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

g g g dbod-proxy-name.cern.ch

ProxySQL + prometheus
node exporter
0
w
i'..;. ® My) s = ume
Availability -
 ELK Stack. L
PraxySQL + prometheus _— 4 = v:;:r%:
. . . node exporter |
 Filebeat + Logstash + elasticsearch + Kibana. e | SO
client | -¥ N . re;ﬁil—lagon
- Mores TPE mysay Reea = wime
client T~ . -
ProxySQL + prometheu 1'_)
node exparter — > =2 Ezmi
-
L
Availability
Zone-C
- .
w logstash «——~ - K kibana
— elasticsearch

10/7/2020 Presenter | Presentation Title

Monitoring

dbod-proxy-name.cern.ch

ProxySQL + prometheus
node exporter

Q

w0)
I!;.o My _c Master == vr[;llﬁﬁe

« The same prometheus node exporters that we use gy | o

for alerting. LJ\FFE;%UT;“#%_ -

* Prometheus server to scrape the metrics. /* ? |

: l.;.a' .
* Prometheus sends metrics to a DBOD InfluxDB | sy D .
Zone-B — ySOL eplica

instance.]

Binlogs
valume

\

Data
volume

\

ProxySQL + prometheus
node exparter

« Metrics are visualised in Grafana. WO

o

Availability
Zone-C

Binlogs
valume

\

Prometheug
scraping

QPromotheus_a ,lﬁ; } m

Grafana

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Results

« Two CERN critical services already using the architecture.

 Downtime during failover: 60 - 90 seconds although it can be reduced
using Traefik for the DNS resolution.

« Evolving architecture to improve its quality.
« HA achieved:

 Redundancy at all levels.

« Contingency plans defined.

 Procedure: monitoring (detect) + python scripts to execute the
plans.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Road Map

 Implement graceful failover.

 Measure the availability of the solution in number of nines (currently
expected to provide from 1to 3 nines). Also MTBF, MTTR.

« Add redundancy ProxySQL level. Either by taking the decision making
out of ProxySQL (i.e. Orchestrator) or implementing the consensus
algorithms ourselves.

* Integrate with Orchestrator for better detection of false positives and
true positives.

« Test again InnoDB Cluster to see if the technology is mature enough.

12/10/2020 Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

CE/RW
\

NN/

Thank you for your attention.
Questions?

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

