
MySQL High Availability in the
Database On Demand service

Abel Cabezas Alonso Project Associate at CERN

Date 12 October 2020

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• 1. Brief introduction to the Database On Demand service.

• 2. Why High Availability?

• 3. High Availability solutions in the MySQL ecosystem.

• 4. ProxySQL + MySQL Primary/Secondary simple replication.

Presentation content

12/10/2020 2

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

1. Brief introduction to the DBOD
Service.

12/10/2020 3

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• Born in 2012 was originally conceived as DBaaS (database as a service)
with the goal of centralising and standardising procedures for the
existing MySQL and PostgreSQL databases within CERN.

• Provide a free open source alternative to the central Oracle-based
database service.

• The DBOD empowers users to perform certain actions that are
traditionally done by DBAs granting them full DBA privileges.

• Any user with a CERN user account can request a DBOD instance.

What is the DBOD Service?

12/10/2020 4

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Database on Demand
service architecture

• The user interacts directly
with his instance as she/he
would do in a regular
installation.

• Web interface for managing
start/stop, backups,
restoring, monitoring
,configuration files, logs…

• Puppet managed nodes.

• Database servers running
on CERN CentOS 7.

• Clustered storage network
provided by NetApp.

12/10/2020 5

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Database on Demand
service architecture.

• One user can own from 1 to
N instances.

• An instance can be owned
by only one person but
managed by all members of
the designated project.

• Instances run on premise
physical or cloud hosts.

• A server can host several
instances and be run on 6
different Availability Zones.

• Each instance’s storage is
split into two separate
volumes.

12/10/2020 6

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• Automated backup and recovery services.

• Monitoring of instance, server and storage metrics.

• Cloning .

• Replication.

• Three different DBMS : MySQL, PostgreSQL and InfluxDB.

• Database upgrades.

• Warranty of service continuity.

• And now… High Availability (for MySQL by now).

What we provide:

12/10/2020 7

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

The DBOD in numbers

• More than 1000 instances as of October 2020.

• 600 MySQL

• 267 PostgreSQL

• 152 InfluxDB

• 155 managed Virtual + Physical hosts.

• Around 36 TB of data managed.

• Around 800 users subscribed to the service.

• 8 years of operational experience.

12/10/2020 8

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

2. Why High Availability?

12/10/2020 9

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• The capacity of a system to offer operational continuity during a given
period of time.

• Three main principles to achieve High Availability:

• Redundancy: if a component fails you have to have a replacement
for it (no single point of failure).

• Contingency plans: or what to do if a component fails.

• Procedure: if a component fails you have to be able to detect it and
then execute your plans.

• Reference: Charles Bell, Mats Kindahl & Lars Thalmann, (2010) MySQL High Availability: Tools for building robust data centers,
O’Reilly, 1st edition.

What is High Availability?

12/10/2020 10

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• Network interventions affecting routers or switches.

• Storage failures.

• Database corruption.

• Host resources exhausted.

• Problems with the hypervisor.

• Regular service operations.

• OS upgrade

• Scheduled database server upgrades.

• Scheduled Storage migrations.

• Not the rule, but many things can go wrong…

Why do we need High Availability in the DBOD
service?

12/10/2020 11

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Precedents

Master/Replica with manual switchover/failover.

• Advantages

• In case of planned interventions, users can prepare in

advance for the outage.

• Users can still operate with the promoted replica during the

major planned interventions.

• Disadvantages:

• Requires manual intervention.

• Requires planning.

• No HA solution.

• Users have to manually update the connection parameters

in their code.

• Unmanageable when the amount of replication sets is big.

• No contingency plan for unexpected failures.

• Failover times depend on the operator’s availability and its

ability to perform the failover.

• We need to automate.

12/10/2020 12

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• Easily adaptable to our infrastructure.

• Easily deployable.

• Architecture easy to use and fix.

• Low impact in terms of resource consumption.

• Single point of connection for the user.

• Automatic failover (a replica has to automatically take over its master
and start accepting writes).

• Prime consistency over availability (better late than nothing).

• Free Open Source.

Our requirements

12/10/2020 13

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

3. High availability solutions in the
MySQL ecosystem.

12/10/2020 14

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

MySQL Simple replication
+ MariaDB MaxScale Proxy

MariaDB MaxScale

• Database proxy that forwards database statements

to one or more MySQL or MariaDB database

servers.

• Forwarding is performed using rules based on the

semantic and the roles of the servers within the

backend cluster of databases.

• Built-in automatic failover.

• Tested as a PoC.

• Problem:

• Licensing.

• BSL 1.0 licensed (not free).

• Max amount of instances without license < 3.

12/10/2020 15

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

MySQL Group Replication with
ProxySQL

Group replication

• Provided as a plugin to MySQL server.

• Distributed database.

• Automatic failover.

• Minimum number of instances to achieve consensus = 3.

• Each transaction is executed or rolled back based on the

consensus of all members.

• Tested as a PoC.

• Problem:

• We hit several bugs while testing.

• Cluster left in inconsistent state without writable

members.

• Hard to repair.

• Further testing envisaged.

12/10/2020 16

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

MySQL InnoDB Cluster.

• MySQL Group replication with extended

functionality.

• Built-in failover.

• MySQL Shell: for easily managing and setting up

the cluster.

• MySQL router as a MySQL native proxy (has no

affinity with the instances of the cluster).

• Uses InnoDB storage engine (like all of our

instances).

• Uses the same binaries as MySQL server.

• Problem:

• Uses group replication.

• Further testing envisaged.

12/10/2020 17

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Vitess

• Vitess is a solution that responds to the problem of scalability

more than a solution for HA, although HA can be achieved

integrating it with Orchestrator.

• Its use can be considered for instances bigger than 500 GB

(not our case).

• A highly available Vitess Cluster requires (at least) the

following components:

• 2 VTGate Servers (Proxy).

• A redundant topology service (e.g. 3 etcd servers).

• 3 MySQL servers with semi-sync replication enabled.

• 3 VTTablet process (Process attached to each MySQL

instance that determines its role in the topology).

• 1 VTctld process.

Problem

• Very complex for our use cases.

• Not all statements compatible with MySQL.

12/10/2020 18

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• Percona XtraDB cluster:

• Different storage engine (XtraDB): compatible but not the same, it may
diverge over time.

• Requires extra binaries for the deployment.

• MySQL NDB cluster:

• Uses different binaries than MySQL server.

• Use of a different storage engine (NDB instead of InnoDB) which requires
a conversion.

Other options discarded because of
incompatibilities with our infrastructure.

12/10/2020 19

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

4. ProxySQL + MySQL
Primary/Secondary replication.

12/10/2020 20

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• High performance, high availability, protocol aware proxy for MySQL and its forks.

• Takes decisions on where to route traffic based on the monitored value of the MySQL

“read-only” / “super-read-only” variable.

• If read-only false => We assume it is a Primary (write to it).

• If read-only true => We assume it is a Secondary (read only).

• It is designed to not perform any specialised operation in relation to the servers it is

connected to.

• No bulit-in failover.

• ProxySQL does not know about the topology it is connected, therefore changes in the

topology have to be updated with custom scripts.

• Built-in monitoring module for checking the status of the connected instances.

• Scheduler module: Offers the user the possibility to write custom scripts that are run by

ProxySQL in a cron-like fashion.

ProxySQL

12/10/2020 21

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

First approach

• Deploy PoxySQL as a systemd service.

• Simply routes traffic.

• Problems:

• How to detect if a component fails?

• Single Point of Failure.

• No redundancy.

• No contingency plan or procedure if a

component fails.

12/10/2020 22

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

How to detect if a node
fails?

• Profiting from the built-in scheduler and

monitoring modules.

• ProxySQL monitors de instances at fixed intervals of

time and stores the result of the health check inside

its internal SQLite3 database.

• Custom python scripts check on the status of the

nodes by looking at the monitoring table.

• If the replica is down => do not allow failover to

happen and alert (prometheus).

• If the Primary is down => wait 5 heartbeats or 25

seconds to avoid false positives and then

perform the failover.

• Replicate the users that can access the backends

through the proxy.

12/10/2020 23

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Adding redundancy

• Run ProxySQL as a docker container.

• What happens if it fails?

• Run it on Nomad (container orchestrator similar to Kubernetes)

with nodes in three different availability zones.

• ProxySQL cluster mode is not really usable, since it does not

implement consensus algorithms between the nodes (on the road

map of ProxySQL creators). Who makes the decisions?

• Solution:

• Run a single instance and be ready to run a new instance in any

of the three availability nodes => nomad provides it.

• Respawn time of a container on any node of the cluster ≈ 5 s .

• New problem:

• Which is our source of truth?

• If the new container is started in a different node how does it

know about the previous topology ?

12/10/2020 24

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Adding Consul

• If the new container is started in a different node how does it

know about the previous topology ?

• Consul:

• K-V high available cluster that keeps information of the

topology.

• If the ProxySQL is restarted, it will first look at the legitimate

roles registered in Consul.

• More problems can happen:

• The primary may go down while the proxy was down.

• If an old master is restarted having two instances with each

“read-only” value set to false, who is the legitimate master?

• Solution:

• More python scripts in the scheduler module, to resolve the

conflicts:

• Two primary conflict.

• Two secondary conflict.

• No primary on the topology.

12/10/2020 25

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Alerting with Prometheus

• Each ProxySQL container runs with a prometheus node

exporter sidecar container.

• Targets (ProxySQL node exporters) are registered in

prometheus server.

• Prometheus server scrapes metrics at fixed intervals of

time.

• Prometheus evaluates its alert rules and if any is triggered

it passes it to the alert manager.

• Notifications by email.

• Different types of alerts:

• Container not running.

• ProxySQL down (container running but ProxySQL main

process down).

• No Client connections

• Replication Lag > X s

• No Primary running.

• No Secondary running.

12/10/2020 26

Presenter | Presentation Title

Logging

• ELK Stack.

• Filebeat + Logstash + elasticsearch + Kibana.

10/7/2020 27

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

Monitoring

• The same prometheus node exporters that we use

for alerting.

• Prometheus server to scrape the metrics.

• Prometheus sends metrics to a DBOD InfluxDB

instance.

• Metrics are visualised in Grafana.

12/10/2020 28

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• Two CERN critical services already using the architecture.

• Downtime during failover: 60 - 90 seconds although it can be reduced
using Traefik for the DNS resolution.

• Evolving architecture to improve its quality.

• HA achieved:

• Redundancy at all levels.

• Contingency plans defined.

• Procedure: monitoring (detect) + python scripts to execute the
plans.

Results

12/10/2020 29

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

• Implement graceful failover.

• Measure the availability of the solution in number of nines (currently
expected to provide from 1 to 3 nines). Also MTBF, MTTR.

• Add redundancy ProxySQL level. Either by taking the decision making
out of ProxySQL (i.e. Orchestrator) or implementing the consensus
algorithms ourselves.

• Integrate with Orchestrator for better detection of false positives and
true positives.

• Test again InnoDB Cluster to see if the technology is mature enough.

Road Map

12/10/2020 30

Thank you for your attention.
Questions?

Abel Cabezas Alonso | MySQL High Availability in the Database On Demand service

