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1. Brief introduction to the DBOD
Service.
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What is the DBOD Service?

« Bornin 2012 was originally conceived as DBaaS (database as a service)
with the goal of centralising and standardising procedures for the
existing MySQL and PostgreSQL databases within CERN.

 Provide a free open source alternative to the central Oracle-based
database service.

« The DBOD empowers users to perform certain actions that are
traditionally done by DBAs granting them full DBA privileges.

« Any user with a CERN user account can request a DBOD instance.
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Database on Demand
service architecture

The user interacts directly
with his instance as she/he
would do in aregular

Database On Demand service

£ openstack. + Physical servers A\ puppet installation.
Application layer Database service layer Web interface for man aging
start/stop, backups,

® i T restoring, monitoring
ak li—M" ,configuration files, logs...
' e
ak Em e [f Puppet managed nodes.
- S— L W Database servers running
ah Poptcaon - on CERN CentOS 7.

Clustered storage network
provided by NetApp.
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Database on Demand
service architecture.

One user can own from 1 to
é Database On Demand service N instanc es

An instance can be owned

Systemd
managed

Database service layer : N > o by only one person but
" , =3l managed by all members of
o cper —S3 Wn the designated project.

VM ar
Physical
machine

Instances run on premise
physical or cloud hosts.

A server can host several
Instances and be run on 6
different Availability Zones.

Each instance’s storage is
split into two separate
volumes.
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What we provide:

« Automated backup and recovery services.

« Monitoring of instance, server and storage metrics.

« Cloning .

« Replication.

 Three different DBMS : MySQL, PostgreSQL and InfluxDB.
« Database upgrades.

« Warranty of service continuity.

 And now... High Availability (for MySQL by now).
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The DBOD Iin numbers

 More than 1000 instances as of October 2020.

600 MySQL
e 267 PostgreSQL
e 152 InfluxDB
« 155 managed Virtual + Physical hosts.
« Around 36 TB of data managed.
* Around 800 users subscribed to the service.
» 8 years of operational experience.

Database on Demand instances

Evolution of the amount of MySQL, PostgreSQL, and InfluxDB instances in the DBOD service

3 1014 19

2012 2013 2014 2015 2016 2017 2018 2019 2020
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2. Why High Availability?
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What is High Availability?

« The capacity of a system to offer operational continuity during a given
period of time.

 Three main principles to achieve High Availability:

 Redundancy: if a component fails you have to have a replacement
for it (no single point of failure).

« Contingency plans: or what to do if a component fails.

 Procedure: if a component fails you have to be able to detect it and
then execute your plans.

Reference: Charles Bell, Mats Kindahl & Lars Thalmann, (2010) MySQL High Availability: Tools for building robust data centers,
O’Reilly, 1st edition.
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Why do we need High Availability in the DBOD
service?

 Network interventions affecting routers or switches.
« Storage failures.
« Database corruption.
« Host resources exhausted.
 Problems with the hypervisor.
 Regular service operations.
 OS upgrade
« Scheduled database server upgrades.
« Scheduled Storage migrations.

* Not the rule, but many things can go wrong...
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Precedents

Master/Replica with manual switchover/failover.
« Advantages

In case of planned interventions, users can prepare in
advance for the outage. % Master

My
Users can still operate with the promoted replica during the

client

major planned interventions.

« Disadvantages:

Requires manual intervention. Wication

Requires planning. client ‘
No HA solution.

] M}‘ e Replica
Users have to manually update the connection parameters

in their code. |
Unmanageable when the amount of replication sets is big.
No contingency plan for unexpected failures.

Failover times depend on the operator’s availability and its
ability to perform the failover.

e We need to automate.
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Our requirements

- Easily adaptable to our infrastructure.

- Easily deployable.

« Architecture easy to use and fix.

« Low impact in terms of resource consumption.
« Single point of connection for the user.

« Automatic failover (areplica has to automatically take over its master
and start accepting writes).

* Prime consistency over availability (better late than nothing).

 Free Open Source.
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3. High availability solutions in the
MySQL ecosystem.
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MySQL Simple replication
+ MariaDB MaxScale Proxy

MariaDB MaxScale

« Database proxy that forwards database statements
to one or more MySQL or MariaDB database
servers.

» Forwarding is performed using rules based on the
semantic and the roles of the servers within the
backend cluster of databases.

* Built-in automatic failover.
» Tested as a PoC.
* Problem:
« Licensing.
« BSL 1.0 licensed (not free).
« Max amount of instances without license < 3.
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MySQL Group Replication with
ProxySQL

Group replication

* Provided as a plugin to MySQL server.
« Distributed database.

« Automatic failover.

«  Minimum number of instances to achieve consensus = 3.

 Each transaction is executed or rolled back based on the
consensus of all members.

« Tested as a PoC.

* Problem:
* We hit several bugs while testing.

* Cluster left in inconsistent state without writable
members.

« Hard to repair.
« Further testing envisaged.

Ll

client

client

ProxySQL

My

MySQL
Group
Replication
Secondary
!\‘1"/
=
P -
Primary
»
| S
x !
» My Secondary
| 8
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Client App

MySQL Shell
MySQL InnoDB Cluster. e -
! |
T i 1
1 |
MySQL Group replication with extended _
functionality. ::r,ﬁ:f;t MYSOL A e
* Built-in failover.
MySQL Shell: for easily managing and setting up e I ......................................... _.
the cluster. MySQL Servers :
« MySQL router as a MySQL native proxy (has no rima
ySQ ySQ proxy ( Primary

affinity with the instances of the cluster).

« Uses InnoDB storage engine (like all of our
instances).
« Uses the same binaries as MySQL server. Group Replication

* Problem:
) ) Secondary Secondary
« Uses group replication. s Instance

* Further testing envisaged.

High Availability Cluster
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Vitess

« Vitess is a solution that responds to the problem of scalability
more than a solution for HA, although HA can be achieved
integrating it with Orchestrator.

» Its use can be considered for instances bigger than 500 GB
(not our case).

* Ahighly available Vitess Cluster requires (at least) the
following components:

« 2 VTGate Servers (Proxy).
» Aredundant topology service (e.g. 3 etcd servers). APP | VITESS

« 3 MySQL servers with semi-sync replication enabled.
« 3 VTTablet process (Process attached to each MySQL

instance that determines its role in the topology).
« 1 VTctld process.

Problem
* Very complex for our use cases.
* Not all statements compatible with MySQL.
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Other options discarded because of
iIncompatibilities with our infrastructure.

e Percona XtraDB cluster:

« Different storage engine (XtraDB): compatible but not the same, it may
diverge over time.

* Requires extra binaries for the deployment.
« MySQL NDB cluster:
« Uses different binaries than MySQL server.

« Use of a different storage engine (NDB instead of InnoDB) which requires
a conversion.
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4. ProxySQL + MySQL
Primary/Secondary replication.
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ProxySQL

High performance, high availability, protocol aware proxy for MySQL and its forks.

Takes decisions on where to route traffic based on the monitored value of the MySQL
“read-only” / “super-read-only” variable.

« Ifread-only false =>We assume it is a Primary (write to it).
« If read-only true => We assume it is a Secondary (read only).

It is designed to not perform any specialised operation in relation to the servers it is
connected to.

No bulit-in failover.

ProxySQL does not know about the topology it is connected, therefore changes in the
topology have to be updated with custom scripts.

Built-in monitoring module for checking the status of the connected instances.

Scheduler module: Offers the user the possibility to write custom scripts that are run by
ProxySQL in a cron-like fashion.
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First approach

5

» Deploy PoxySQL as a systemd service. L:TL\ ™ o

s M
« Simply routes traffic. | y

~EroySaL/
* Problems: clent SPOF
 How to detect if a component fails?
« Single Point of Failure.
* No redundancy.

* No contingency plan or procedure if a
component fails.

(R
(R0

GTID
replication

My Secondary

o
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How to detect If a node
falls?

* Profiting from the built-in scheduler and
monitoring modules.

* ProxySQL monitors de instances at fixed intervals of .
time and stores the result of the health check inside  cen \ - MysaL [ = vkme
its internal SQLite3 database. —> 2=

Q . o lu";' s= [, Binlogs
» Custom python scripts check on the status of the ProysaL = volume
nodes by looking at the monitoring table. clent N -
replication
« If the replica is down => do not allow failover to p
happen and alert (prometheus). y N L e=» D
Secondary — volume
« If the Primary is down => wait 5 heartbeats or 25 > =
seconds to avoid false positives and then l!—.. sS | = ones

perform the failover.

* Replicate the users that can access the backends
through the proxy.
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Adding redundancy

* Run ProxySQL as a docker container.

dbod-proxy-name.cern.ch

* What happens if it fails? [ bmysa
* Run it on Nomad (container orchestrator similar to Kubernetes) %
with nodes in three different availability zones. - . .
l!;- My : Master —, = volzﬁe
ey , %
*  ProxySQL cluster mode is not really usable, since it does not /' - > T=y Bnigs
. . ProxySQL
implement consensus algorithms between the nodes (on the road Ll— | "y, [
.. ; 3 GTID
map of ProxySQL creators). Who makes the decisions? B //T 0 | replceton
° i - I (e
SO|UtI0n . . - . D Aﬂffg” y i — = vgme
* Run a single instance and be ready to run a new instance in any dlnt Y ' oo
of the three availability nodes => nomad provides it. Fgﬂ = =) L= snes
* Respawn time of a container on any node of the cluster=5s . - o
[
Availability
Zone-C
- J

*  New problem:
 Which is our source of truth?

« |f the new container is started in a different node how does it
know about the previous topology ?
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Adding Consul

dbod-proxy-name.cern.ch

 If the new container is started in a different node how does it %0
know about the previous topology ? IE.. o) M =,
 Consul: W/ITF__ = e
« K-V high available cluster that keeps information of the J:-l Q
topology. - | rplton
- If the ProxySQL is restarted, it will first look at the legitimate I, sty L =
roles registered in Consul. )/ i 22 N
* More problems can happen: % o —<= =
* The primary may go down while the proxy was down. v
« If an old master is restarted having two instances with each A

“read-only” value set to false, who is the legitimate master?

+ Solution: e C C G --

« More python scripts in the scheduler module, to resolve the li lﬁ li
CO n fl i CtS : Availat;l.\-t; Avai\emi'ty Aua\lzmi-ty

Zone-A Zone-B Zone-C

« Two primary conflict.
« Two secondary conflict.
* No primary on the topology.
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dbod-proxy-name.cern.ch

Alerting with Prometheus

e o
&0
. : l!.-o . Master — = ame
« Each ProxySQL container runs with a prometheus node ety ”‘{ -
exporter sidecar container. S —E == I
« Targets (ProxySQL node exporters) are registered in le-&: 94;_\ oo
prometheus server. / i o | | rpteaen
* Prometheus server scrapes metrics at fixed intervals of [ :!:W . el ke = om
time. clent 5 s I 1i_ =z |
. _Promethe_us evaluates its alert rules and if any is triggered E‘ié"‘__\ - - =
it passes it to the alert manager. - o
* Notifications by email. All'-;w
- Different types of alerts:
« Container not running. ranened
*  ProxySQL down (container running but ProxySQL main
process down).
« No Client connections QPFOTW"‘“%
* Replication Lag > X s | >
* No Primary running. -

* No Secondary running.
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g g g dbod-proxy-name.cern.ch

ProxySQL + prometheus
node exporter
0
w
i'..;. ® My ) s = ume
Availability -
 ELK Stack. L
PraxySQL + prometheus _— 4 = v:;:r%:
. . . node exporter |
 Filebeat + Logstash + elasticsearch + Kibana. e | SO
client | -¥ N . re;ﬁil—lagon
- Mores TPE mysay Reea = wime
client T~ . -
ProxySQL + prometheu 1'_ )
node exparter — > =2 Ezmi
-
L
Availability
Zone-C
- .
w logstash «——~ - K kibana
— elasticsearch
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Monitoring

dbod-proxy-name.cern.ch

ProxySQL + prometheus
node exporter

Q

w0 )
I!;.o My _c Master == vr[;llﬁﬁe

« The same prometheus node exporters that we use gy | o

for alerting. LJ\FFE;%UT;“#%_ -

* Prometheus server to scrape the metrics. /* ? |

: l.;.a' .
* Prometheus sends metrics to a DBOD InfluxDB | sy D .
Zone-B — ySOL eplica

instance. ]

Binlogs
valume

\

Data
volume

\

ProxySQL + prometheus
node exparter

« Metrics are visualised in Grafana. WO

o

Availability
Zone-C

Binlogs
valume

\

Prometheug
scraping

QPromotheus_a ,lﬁ; } m

Grafana
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Results

« Two CERN critical services already using the architecture.

 Downtime during failover: 60 - 90 seconds although it can be reduced
using Traefik for the DNS resolution.

« Evolving architecture to improve its quality.
« HA achieved:

 Redundancy at all levels.

« Contingency plans defined.

 Procedure: monitoring (detect) + python scripts to execute the
plans.
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Road Map

 Implement graceful failover.

 Measure the availability of the solution in number of nines (currently
expected to provide from 1to 3 nines). Also MTBF, MTTR.

« Add redundancy ProxySQL level. Either by taking the decision making
out of ProxySQL (i.e. Orchestrator) or implementing the consensus
algorithms ourselves.

* Integrate with Orchestrator for better detection of false positives and
true positives.

« Test again InnoDB Cluster to see if the technology is mature enough.
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Thank you for your attention.
Questions?
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